174 research outputs found

    The gRASs Is Greener: Potential New Therapies in Lung Cancer with Acquired Resistance to KRASG12C Inhibitors

    Get PDF
    Summary: Inhibitors of KRASG12C that bind the target in its inactive conformation and lock it in off-mode have shown early signs of clinical activity in patients with KRASG12C-mutant lung cancer, but responses tend to be short-lived and invariably prelude the development of acquired resistance through largely unexplored mechanisms. A new study describes the emergence of RAS–MAPK heterogeneous subclonal alterations in a patient relapsed on a KRASG12C inactive-state inhibitor and identifies a novel KRASY96D-resistant variant that is druggable by a next-generation compound capable of associating with KRASG12C in its active configuration

    Primary and acquired resistance to EGFR-targeted therapies in colorectal cancer: impact on future treatment strategies.

    Get PDF
    Only approximately 10 % of genetically unselected patients with chemorefractory metastatic colorectal cancer experience tumor regression when treated with the anti-epidermal growth factor receptor (EGFR) antibodies cetuximab or panitumumab (“primary” or “de novo” resistance). Moreover, nearly all patients whose tumors initially respond inevitably become refractory (“secondary” or “acquired” resistance). An ever-increasing number of predictors of both primary and acquired resistance to anti-EGFR antibodies have been described, and it is now evident that most of the underlying mechanisms significantly overlap. By trying to extrapolate a unifying perspective out of many idiosyncratic details, here, we discuss the molecular underpinnings of therapeutic resistance, summarize research efforts aimed to improve patient selection, and present alternative therapeutic strategies that are now under development to increase response and combat relapse

    β4 integrin activates a Shp2–Src signaling pathway that sustains HGF-induced anchorage-independent growth

    Get PDF
    Despite being a cell–matrix adhesion molecule, β4 integrin can prompt the multiplication of neoplastic cells dislodged from their substrates (anchorage-independent growth). However, the molecular events underlying this atypical behavior remain partly unexplored. We found that activation of the Met receptor for hepatocyte growth factor results in the tyrosine phosphorylation of β4, which is instrumental for integrin-mediated recruitment of the tyrosine phosphatase Shp2. Shp2 binding to β4 enhances the activation of Src, which, in turn, phosphorylates the multiadaptor Gab1 predominantly on consensus sites for Grb2 association, leading to privileged stimulation of the Ras–extracellular signal-regulated kinase (ERK) cascade. This signaling axis can be inhibited by small interfering RNA–mediated β4 depletion, by a β4 mutant unable to bind Shp2, and by pharmacological and genetic inhibition of Shp2 or Src. Preservation of the β4 docking sites for Shp2 as well as the integrity of Shp2, Src, or ERK activity are required for the β4-mediated induction of anchorage-independent growth. These results unravel a novel pathway whereby β4 directs tyrosine kinase–based signals toward adhesion-unrelated outcomes
    • …
    corecore